

1

2

Summary

- Following this topic, you now
- Understand inverse quadratic interpolation
- It uses quadratic interpolating polynomials to approximate the inverse
- Understand that this approximation of the inverse is evaluated at zero
- This results in simply the constant coefficient
- Know that this method is $\mathrm{O}\left(h^{\mu}\right)$,
which converges almost as quickly as Newton's method

3

Introduction

- Suppose f is a function, so $y=f(x)$
- In this case, if x is a root, then $f(x)=0$
- Suppose f is locally invertible around the root
- In this case, $f^{-1}(y)=x$ therefore $f^{-1}(0)$ must be a root
- For example,

$$
\begin{aligned}
& \cos ^{-1}(0)=\pi / 2 \text { and therefore } \cos (\pi / 2)=0 \\
& e^{0}=1, \text { and therefore } \ln (1)=0 \\
& y=4 x^{3}+6 x+1 \\
& x=\frac{\sqrt[3]{y-1+\sqrt{y^{2}-2 y+9}}}{\frac{\sqrt[3]{2}}{2}-\frac{1}{2 \sqrt{2}}}-\frac{1}{\sqrt[3]{y-1+\sqrt{y^{2}-2 y+9}}}
\end{aligned}
$$

Interpolating quadratics

- A function is locally invertible if it is locally one-to-one
- How do we approximate the inverse?
- Find the polynomial interpolating the points

$$
\left(f\left(x_{0}\right), x_{0}\right),\left(f\left(x_{1}\right), x_{1}\right),\left(f\left(x_{2}\right), x_{2}\right)
$$

- The f-values must be unique, otherwise it is not invertible

5

6

Interpolating quadratics

- The constant coefficient is

$$
\begin{gathered}
\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right) f\left(x_{k}\right) f\left(x_{k-1}\right) x_{k-2} \\
+\left(f\left(x_{k-1}\right)-f\left(x_{k-2}\right)\right) f\left(x_{k-1}\right) f\left(x_{k-2}\right) x_{k} \\
x_{k+1} \leftarrow \frac{+\left(f\left(x_{k-2}\right)-f\left(x_{k}\right)\right) f\left(x_{k-2}\right) f\left(x_{k}\right) x_{k-1}}{\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right)\left(f\left(x_{k-1}\right)-f\left(x_{k-2}\right)\right)\left(f\left(x_{k-2}\right)-f\left(x_{k}\right)\right)} \\
f\left(x_{0}\right)
\end{gathered}
$$

7

Interpolating quadratics

- Of course, this technique fails if any two of the f values are the same or very similar
- To ensure the f values are likely to be different,
this technique works well if the root is bracketed
- In this case, at least two of the differences are guaranteed to be relatively large
- This is used in the next algorithm: the Brent-Dekker method

Rate of convergence

- Like Muller's method, if h is the error, then the rate of convergence is $\mathrm{O}\left(h^{\mu}\right)$ where μ is the real root of

$$
x^{3}=x^{2}+x+1,
$$

so $\mu \approx 1.8393$

- This is, again, significantly better than the secant method
- If we are bracketing the root, this even better than either of the bisection or bracketed secant methods

9

13

